很早就知道钯的乙烯化合物,如[C2H4PdCl2]2,在水溶液中迅速分解生成乙醛和金属钯,斯密特(Smidt)和他的同事(在Wacker chemie)将这个化学计量反应变成循环反应,他们的主要贡献是将已知的个别反应联系在一道:
Pd(Ⅱ)-Cu(Ⅱ)氯化物溶液氧化乙烯基本上是定量的,只需低农度的钯。过程可以一步或两步进行,若按两步进行,重新氧化是分开用O2进行的。
RCH=CHR'或RCH=CH2型的烯烃氧化得酮,一个重要的例子是由丙烯生成丙酮。
当用非水介质时,反应过程有差别又有联系,如在醋酸中,乙烯得到醋酸乙烯酯,在乙醇中则可生成乙烯醚,通常有竞争反应会得到一些不希望的副产品。这些过程都进行了大量的工业规模研究,虽然氧化到醛是成功的,但试图生产醋酸乙烯酯则由于腐蚀问题和催化剂回收困难不经济而放弃。
反应机理众说纷云,但下面的说法看来符合所观察到的事实,因为反应是在氯离子浓度>0.2M的PdⅡ溶液中进行的,金属更像是以[PdCl4]2-形式存在,则以下列反应进行:
[PdCl4]2-+C2H4 ⇋[PdCl3(C2H4)]-+Cl- (快)
[PdCl3(C2H4)]-+H2O ⇋[PdCl2(H2O)(C2H4)]+Cl-
[PdCl2(H2O)(C2H4)]+H2O ⇋[PdCl2(OH)(C2H4)]-+H3O+
此羟基物种的反式异构体没疑问比顺式异构体更稳定,但顺式异构体可存在动力学上有意义的量,以致可以发生顺式转移的进一步反应,这样的转移有可能在四配位的溶剂物中,Cl-离子或溶剂参与下进行,如
这反应分三个步骤,即(a)由链的β碳原子上一个氢迅速转移到金属上,(b)氢由金属转移到α-CH2基(如加氢反应),最后(c)还原排除金属钯。
设想的过程不仅根据速率定律和与Cl-及H+的阻化作用,亦是重氢标记研究的结果,这个研究表明在D2O中没有氘结合到乙醛中。
在醋酸介质中,醋酸离子可看作是亲核的,类似OH-和醇中的醇盐离子。
CuⅡ的氯化络合物氧化金属钯的机理还不十分了解,可能涉及到电子通过卤桥转移,空气极迅速氧化CuⅠ的氯化络合物是早已知道的,可能是通过最初的氧络合物进行:
CuCl2-+O2 ⇋ClCuO2+Cl-
接着生成基团如O2-OH或HO2
ClCuO2+H3O+ → CuCl++HO2+H2O
正如齐格勒(Ziegler)和纳塔(Natta)发现的一样,对钯络合物反应性的认识导致大量的涉及到各种各样有机物的有关专利和文章的发表。所有反应看来都牵涉到生成Pd—C键,可能还有Pd—H键,所有反应看来都是插入或转移反应,当共轭烯烃或烯丙基化物参加,钯烯丙基物种是毫无疑义的中间体
下面是几个例子: