原子核是比原子更深一个层次的物质结构。原子核物理学是研究原子核的性质、内部结构、内部运动、内部激发状态、衰变过程、裂变过程以及它们之间的反应过程的学科。
在原子核被发现以后,科学家们曾经以为原子核是由质子和电子组成的。1932年,英国科学家查德威克发现了中子,这才使人们认识到原子核可能具有更复杂的结构。
质子和中子统称为核子,中子不带电,质子带正电荷,因此质子间存在着静电排斥力。万有引力虽然使各核子相互吸引,但在两个质子之间的静电排斥力比它们之间的万有引力要大万亿亿倍以上。所以,一定存在第三种基本相互作用——强相互作用力。人们将核子结合成为原子核的力称为核力,核力来源于强相互作用。从原子核的大小以及核子和核子碰撞时的截面估计,核力的有效作用距离力程约为一千万亿分之一米。
原子核主要由强相互作用力将核子结合而成,当原子核的结构发生变化或原子核之间发生反应时,要吸收或放出很大的能量。一些很重的原子核(如铀原子核)在吸收一个中子以后,会裂变成两个较轻的原子核,同时放出20~30个中子和很大的能量。两个很轻的原子核也能熔合成一个较重的原子核,同时放出巨大的能量。这种原子核的熔合过程叫作聚变。
粒子加速器的发明和裂变反应堆的建成,使人们能够获得大量能量较高的质子、电子、光子、原子核和大量中子。可以用来轰击原子核,系统地开展关于原子核的性质及其运动、转化和相互作用过程的研究。
高能物理研究发现,核子还有内部结构。原子核结构是一个比原子结构更为复杂的研究领域。目前,关于原子核结构,原子核反应和衰变的理论都是模型理论,其中一部分相当成功地反映了原子核的客观规律。
固体物理学是研究固体性质、微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。它是物理学中内容极丰富、应用极广泛的分支学科。
固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来喇格父子1913年的工作,建立了晶体结构分析基础。对于磁有序的结构的晶体,增加了自旋磁矩有序排列的对称性,直到20世纪50年代舒布尼科夫才建立了磁有序的对称理论。以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。这类研究统称为凝聚态物理学。
固体物理对于技术的发展有很多重要的应用。晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。固体物理学也是材料科学的基础。