先河原料科技-999化工商城欢迎您 化学试剂销售咨询:0598-7509639,或加QQ339904316 微信咨询:w999gou | 请登录  |  免费注册
当前位置: 首页 > 化学文章 > 化学常识 > 臭氧层空洞的形成与危害

相关商品

  • 氮酮
  • 氮酮
    本店售价:¥49元

臭氧层空洞的形成与危害


实验室k / 2018-11-30

       臭氧(O3)广泛存在于大气之中,从地面到70千米的高空都有分布,在大约20千米高的大气中最为密集。这一区城的臭氧几乎环绕整个地球,因此这一区城被称做臭氧层。

       由于污染严重,臭氧层出现了许多空洞,不过臭氧层空洞并不是一个真实的洞,而是在一层浓密的臭氧层上出现了一处极为稀薄,甚至无法构成臭氧层的区城。在这一区城仍有臭氧分子存在,只是密度很小。臭氧层空洞严重影响着对应区域地面和水下的生物,包括人类的健康和繁衍,这一现象目前以南极洲地区最为严重。如今这一问题已受到世界各国的普遍关注,人们正在研究和采取各种方式弥补和改善臭氧层空洞现象。那么臭氧层空洞是如何形成的呢?

臭氧层空洞

       在高层大气中(高度范围约离地面15~24千米),由氧吸收太阳紫外线辐射而生成数量可观的臭氧(O3)。光子首先将氧分子分解成氧原子,氧原子与氧分子反应生成臭氧:

O2 → 2O

O+O2 → O3

       O3和O2属于同素异形体,在通常的温度和压力条件下,两者都是气体。

       当O3的浓度在大气中达到最大值时,就形成厚度约20千米的臭氧层。臭氧能吸收波长在220~330纳米范围内的紫外光,从而防止这种高能紫外线对地球上生物的伤害。

       过去人类的活动尚未达到平流层(海拔约30千米)的高度,而臭氧层主要分布在距地面20~25千米的大气层中,所以未受到重视。近年来不断测量的结果证实臭氧层已经开始变薄,乃至出现空洞。1985年,发现南极上方出现了面积与美国大陆相近的臭氧层空洞,1989年又发现北极上空正在形成的另一个臭氧层空洞。此后发现空洞并非固定在一个区域内,而是每年在移动,且面积不断扩大。臭氧层变薄和出现空洞,就意味着有更多的紫外线辐射到达地面。紫外线对生物具有破坏性,对人的皮肤、眼晴,甚至免疫系统都会造成伤害,强烈的紫外线还会影响鱼虾类和其他水生生物的正常生存,乃至造成某些生物灭绝,会严重阻碍各种农作物和树木的正常生长,又会使由CO2量增加而导致的温室效应加剧。

       人类活动产生的微量气体,如氮氧化物和氟氯烷等,对大气中臭氧的含量有很大的影响。引起臭氧层被破坏的原因有多种解释,其中公认的原因之一是氟利昂(氟氯甲烷类化合物)的大量使用。氟利昂被广泛应用于制冷系统、发泡剂、洗净剂、杀虫剂、除臭剂、头发喷雾剂等。氟利昂化学性质稳定,易挥发,不溶于水。但进入大气平流层后,受紫外线辐射而分解产生Cl原子,Cl原子则可引发破坏O3循环的反应:

Cl+O3 → ClO+O2

ClO+O → ClO2

       由第一个反应消耗掉的Cl原子,在第二个反应中又重新产生,又可以和另外一个O3起反应,因此每一个Cl原子能参与大量的破坏O3的反应,这两个反应加起来的总反应是:

O3+O → 2O2

       反应的最后结果是将O3转变为O2,而Cl原子本身只作为催化剂,反复起分解O3的作用。O3就被来自氟利昂分子释放出的Cl原子引发的反应而破坏。

       另外,大型喷气机的尾气和核爆炸烟尘的释放高度均能达到平流层,其中含有各种可与O3作用的污染物,如NO和某些自由基等。人口的增长和氮肥的大量生产等也可以危害到臭氧层。在氮肥的生产中向大气释放出各种氮的化合物,其中一部分可能是有害的氧化亚氮(N2O),它会引发下列反应:

N2O+O → N2+O2

N2+O2 → 2NO

NO+O3 → NO2+O2

NO2+O → NO+O2

O3+O → 2O2

       NO按后两个反应式循环反应,使O3分解。

臭氧层空洞的危害

       臭氧层的破坏造成的危害主要表现在下列几个方面:

       1.对人类健康的影响

       紫外线促进在皮肤上合成维生素D,对骨组织的生成、保护均起有益作用。但紫外线(λ=200~400纳米)中的紫外线B(λ=280~320纳米)过量照射人体可以引起皮肤癌和免疫系统受损及白内障等眼疾病。据估计,平流层O3减少1%(即紫外线B增加2%),皮肤癌的发病率将增加4%-6%。按现在全世界每年大约有10万人死于皮肤癌计,死于皮肤癌的人每年大约要增加5000人。在长期受太阳照射地区的浅色皮肤人群中,50%以上的皮肤病是阳光诱发的,即肤色浅的人比其他种族的人更容易患各种由阳光诱发的皮肤癌。此外,紫外线还会使皮肤过早老化。

       2.对植物的影响

       近10多年来,科学家对200多个品种的植物进行了增加紫外线照射的实验,发现其中2/3的植物显示出敏感性。试验中有90%的植物是农作物品种,其中豌豆、大豆等豆类,南瓜等瓜类,西红柿以及白菜科等农作物对紫外线特别敏感(花生和小麦等植物有较好的抵御能力)。一般说来,秧苗比有营养机能的组织(如叶片)更敏感。紫外辐射会使植物叶片变小,因而减少捕获阳光进行光合作用的有效面积,生成率下降。对大豆的初步研究表明,紫外辐射会使其更易受杂草和病虫害的损害,产量降低。同时紫外线B可改变某些植物的再生能力及收获产物的质量,这种变化的长期生物学意义(尤其是遗传基因的变化)是相当深远的。

       3.对水生系统的影响

       紫外线B的增加,对水生系统也有潜在的危险。水生植物大多贴近水面生长,这些处于海洋生态食物链最底部的小型浮游植物的光合作用最容易被削弱(约60%),从而危及整个生态系统。增强的紫外线B还可通过消灭水中微生物而导致淡水生态系统发生变化,并因此而减弱水体的自然净化作用。增强的紫外线B还可杀死幼鱼、小虾和蟹。研究表明,在O3量减少9%的情况下,约有8%的幼鱼死亡。

       4.对其他方面的影响

       过多的紫外线会加速塑料老化,增加城市光化学烟雾。另外,氟利昂、CH4、N2O等引起臭氧层破坏的痕量气体的增加,也会引起温室效应。


用户评论(共0条评论)

  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
评价等级:
评论内容:
验证码: captcha
配送方式
货物签收
化工运输方式
售后服务
退换货原则
销售条款
购物指南
注册新会员
订购方式
购买需知
支付方式
关于我们
先河原料科技
品牌文化
经营资质
营业执照
扫999化工微信下单支付