所有原子的中心都有原子核,电子围绕原子核运行。原子核由质子和中子构成,每个质子带一个单位的正电荷,中子不带电。而每个电子各带一个单位的负电荷。原子本身呈电中性,所以质子带的正电荷总数与电子带的负电荷总数相等。
原子核的质子数量就是所谓的“原子序数”。元素周期表就是按原子序数从小到大、从左到右排列的。排第一的是有1个质子的氢,排第二的是有2个质子的氦,排第三的是有3个质子的锂……如此这般。
当然,围绕原子核运行的电子数量也与原子序数相等。换言之,原子拥有的电子数量是按原子序数递增的。将这些元素放进周期表,外围轨道的电子状态相似的元素就会排成一列。
一八六九年,俄国科学家门捷列夫发现元素存在相似的周期性。他根据变化规律,将元素归纳成一张表——元素周期表就此诞生。当时人们还不了解原子的结构,所以归纳出这样一张能体现出元素间关联的一览表,是一件具有里程碑意义的大事。
一览表还有什么好处呢?有了它,我们就能预言未知的元素。门捷列夫在元素周期表中为尚未发现的元素空出位置,并对这些元素的特征进行预测,还给它们起了“暂用名”。
比如,他将位于铝(Al)正下方的元素命名为“类铝”,将硅(Si)正下方的元素命名为“类硅”。
一八七五年,法国化学家德・布瓦博德朗从锌的硫化矿物中提取出了镓(Ga)。根据它的性质,可知它就是周期表中的“类铝”。
一八八六年,德国化学家C·温克勒从硫银锗矿中成功分离出了锗(Ge)。人们意识到,那就是门捷列夫预言的“类硅”。
新元素一个接一个被人们发现,填补了元素周期表中的空白。而这些新发现的元素与门捷列夫的预言不谋而合。这也从侧面证实了周期表的正确性,于是这张表格一跃成为化学界关注的焦点。门捷列夫的智慧着实令人钦佩。
但我觉得现今的学校教育太侧重于历史知识。我们固然要向门捷列夫致敬,可是为了让学生感受到周期表的魅力,老师得为他们打一些量子化学的基础。因为周期表能在不使用算式的情况下,表现出量子化学的结论。